Dissemin is shutting down on January 1st, 2025

Published in

Scientific Scholar, Indian Journal of Medical Sciences, 7(67), p. 161, 2013

DOI: 10.4103/0019-5359.125877

Links

Tools

Export citation

Search in Google Scholar

Autonomic system modification in Zen practitioners

Journal article published in 2013 by Alessandra Fiorentini, Josuel Ora ORCID, Luigi Tubani
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND: Meditation in its various forms is a traditional exercise with a potential benefit on well-being and health. On a psychosomatic level these exercises seem to improve the salutogenetic potential in man.Especially the cardiorespiratory interaction seems to play an important role since most meditation techniques make use of special low frequency breathing patterns regardless of whether they result from a deliberate guidance of breathing or other mechanisms, for example, the recitation of specific verse. During the different exercises of Zen meditation the depth and the duration of each respiratory cycle is determined only by the process of breathing. Respiratory manoeuvres during Zazen meditation may produce HR variability changes similar to those produces during biofeedback.Recognition that the respiratory sinus arrhythmia (RSA) was mediated by efferent vagal activity acting on the sinus node led investigators to attempt to quantify the fluctuations in R-R intervals that were related to breathing. MATERIALS AND METHODS: Nine Zen practitioners with five years of experience took part in the study. Autonomic nervous system function was evaluated by heart rate variability (HRV) analysis during 24-hours ECG recording during zen meditation and at rest. RESULTS: The data of this small observational study confirm that ZaZen breathing falls within the range of low frequency HR spectral bands. Our data suggest that the modification of HR spectral power remained also in normal day when the subject have a normal breathing. CONCLUSION: We suggest that the changes in the breathing rate might modify the chemoreflex and the continuous practice in slow breathing can reduce chemoreflex. This change in the automonic control of respiration can be permanent with a resetting of endogenous circulatory rhythms.