Published in

Wiley, ChemMedChem, 11(9), p. 2580-2586, 2014

DOI: 10.1002/cmdc.201402219

Links

Tools

Export citation

Search in Google Scholar

Molecular Mechanism of Action of 2-Ferrocenyl-1,1-diphenylbut-1-ene on HL-60 Leukemia Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aim of this work was to investigate the mechanism of action of 2-ferrocenyl-1,1-diphenylbut-1-ene (1) on HL-60 human leukemia cells. While inactive against noncancerous cells, 1 provoked a concentration-dependent decrease in viable tumor cells, primarily via apoptosis, as evidenced by analysis of cell morphology, activation of caspases3 and 7, increased DNA fragmentation, and externalization of phosphatidylserine. Necrosis was observed only at the highest tested concentration (4M). Compound 1 interfered with the cell cycle, causing an accumulation of cells in the G(1)/G(0) phase. Interaction of 1 with dsDNA and ssDNA was observed by differential pulse voltammetry and confirmed by hyperchromicity in the UV/Vis spectra of dsDNA, with an interaction constant of 2x10(4)M(-1). Both the organic analogue 1,1,2-triphenylbut-1-ene (2) and ferrocene were inactive against cancer and noncancer cell lines and did not react with DNA. These results reinforce the idea that the hybrid strategy of conjugating ferrocene to the structure of tamoxifen derivatives is advantageous in finding new substances with antineoplastic activity.