Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Langmuir, 44(31), p. 12148-12154, 2015

DOI: 10.1021/acs.langmuir.5b03335

Links

Tools

Export citation

Search in Google Scholar

Self-Organization of Quantum Rods Induced by Lipid Membrane Corrugations

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Self-organization of fluorescent nanoparticles, using biological molecules such as phospholipids to control assembly distances, is a promising method for creating hybrid nanostructures. We report here the formation of hybrid condensed phases made of anisotropic nanoparticles and phospholipids. Such structure formation is driven by electrostatic interaction between the nanoparticles and the phospholipids, and results in the formation of a 2D rectangular liquid crystal, as confirmed by high-resolution Small-Angle X-ray Scattering (SAXS). Moreover, we show that the fluorescent properties of the NPs are not modified by the self-assembly process.