Published in

Elsevier, Applied Surface Science, (354), p. 367-372

DOI: 10.1016/j.apsusc.2015.05.060

Links

Tools

Export citation

Search in Google Scholar

Investigation of the adsorption properties of borazine and characterisation of boron nitride on Rh(1 1 1) by electron spectroscopic methods

Journal article published in 2015 by A. P. Farkas ORCID, P. Török, F. Solymosi, J. Kiss, Z. Kónya
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The adsorption and dissociation of borazine were investigated on Rh(111) single crystal surface by Auger electron spectroscopy (AES), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD) methods. Borazine is one of the most frequently applied precursor molecules in the preparation process of boron nitride overlayer on metal single crystal surfaces. On Rh(111) surface it adsorbs molecularly at 140 K. We did not find any preferred orientation, although there is evidence of “flat” and perpendicular molecular geometry, too. Dehydrogenation starts even below 200 K and finishes until ∼7-800 K. No other boron or nitrogen containing products were observed in TPD beyond molecular borazine. Through the hydrogen loss of molecules hexagonal boron nitride layer forms in the 600-1100 K temperature range as it was indicated by AES and the characteristic optical phonon HREEL losses of h-BN overlayer. The adsorption behaviour of the boron nitride covered surface was also studied through the adsorption of methanol at 140 K. HREELS and TPD measurements showed that methanol adsorbed molecularly and a fraction of it dissociated to form surface methoxy and gas phase hydrogen on the h-BN/Rh(111) surface.