Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astronomical Journal, 4(139), p. 1426-1437, 2010

DOI: 10.1088/0004-6256/139/4/1426

Links

Tools

Export citation

Search in Google Scholar

Observational Study of the Multistructured Planetary Nebula NGC 7354

Journal article published in 2010 by M. E. Contreras, R. Vázquez, L. F. Miranda, L. Olguín, S. Zavala ORCID, S. Ayala
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present an observational study of the planetary nebula (PN) NGC 7354 consisting of narrowband Halpha and [NII]6584 imaging as well as low- and high-dispersion long-slit spectroscopy and VLA-D radio continuum. According to our imaging and spectroscopic data, NGC 7354 has four main structures: a quite round outer shell and an elliptical inner shell, a collection of low-excitation bright knots roughly concentrated on the equatorial region of the nebula, and two symmetrical jet-like features, not aligned either with the shells' axes, or with each other. We have obtained physical parameters like electron temperature and electron density as well as ionic and elemental abundances for these different structures. Electron temperature and electron density slightly vary throughout the nebula. The local extinction coefficient c_Hbeta shows an increasing gradient from south to north and a decreasing gradient from east to west consistent with the number of equatorial bright knots present in each direction. Abundance values show slight internal variations but most of them are within the estimated uncertainties. In general, abundance values are in good agreement with the ones expected for PNe. Radio continuum data are consistent with optically thin thermal emission. We have used the interactive three-dimensional modeling tool SHAPE to reproduce the observed morphokinematic structures in NGC 7354 with different geometrical components. Our SHAPE model is in very good agreement with our imaging and spectroscopic observations. Finally, after modeling NGC 7354 with SHAPE, we suggest a possible scenario for the formation of the nebula. ; Comment: Accepted for publication in AJ, 12 pages, 8 figures