Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, International Journal of Neuropsychopharmacology, 08(17), p. 1321-1326, 2014

DOI: 10.1017/s1461145714000649

Links

Tools

Export citation

Search in Google Scholar

Raphe AMPA receptors and nicotinic acetylcholine receptors mediate ketamine-induced serotonin release in the rat prefrontal cortex.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Several lines of evidence indicate that ketamine has a rapid antidepressant-like effect in rodents and humans, but underlying mechanisms are unclear. In the present study, we investigated the effect of ketamine on serotonin (5-HT) release in the rat prefrontal cortex by in vivo microdialysis. A subcutaneous administration of ketamine (5 and 25 mg/kg) significantly increased the prefrontal 5-HT level in a dose-dependent manner, which was attenuated by local injection of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonists into the dorsal raphe nucleus (DRN). Direct stimulation of AMPARs in the DRN significantly increased prefrontal 5-HT level, while intra-DRN injection of ketamine (36.5 nmol) had no effect. Furthermore, intra-DRN injection of an α 4 β 2-nicotinic acetylcholine receptor (nAChR) antagonist, dihydro-β-erythroidine (10 nmol), significantly attenuated the subcutaneous ketamine-induced increase in prefrontal 5-HT levels. These results suggest that AMPARs and α 4 β 2-nAChRs in the DRN play a key role in the ketamine-induced 5-HT release in the prefrontal cortex.