Published in

Wiley, Proteins: Structure, Function, and Bioinformatics, 2(71), p. 575-586, 2008

DOI: 10.1002/prot.21787

Links

Tools

Export citation

Search in Google Scholar

Influence of oligomerization on the dynamics of G-protein coupled receptors as assessed by normal mode analysis

Journal article published in 2007 by Masha Y. Niv ORCID, Marta Filizola
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The recently discovered impact of oligomerization on G-protein coupled receptor (GPCR) function further complicates the already challenging goal of unraveling the molecular and dynamic mechanisms of these receptors. To help understand the effect of oligomerization on the dynamics of GPCRs, we have compared the motion of monomeric, dimeric, and tetrameric arrangements of the prototypic GPCR rhodopsin, using an approximate—yet powerful—normal mode analysis (NMA) technique termed elastic network model (ENM). Moreover, we have used ENM to discriminate between putative dynamic mechanisms likely to account for the recently observed conformational rearrangement of the TM4,5-TM4,5 dimerization interface of GPCRs that occurs upon activation. Our results indicate: (1) significant perturbation of the normal modes (NMs) of the rhodopsin monomer upon oligomerization, which is mainly manifested at interfacial regions; (2) increased positive correlation among the transmem-brane domains (TMs) and between the extracellular loop (EL) and TM regions of the rhodopsin protomer; (3) highest inter-residue positive correlation at the interfaces between protomers; and (4) experimentally testable hypotheses of differential motional changes within different putative oligomeric arrangements.