Dissemin is shutting down on January 1st, 2025

Published in

Universidade Federal de Lavras, Cerne, 3(16), p. 381-390, 2010

DOI: 10.1590/s0104-77602010000300014

Links

Tools

Export citation

Search in Google Scholar

Use of near infrared spectroscopy to distinguish carbonization processes and charcoal sources

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The near infrared spectroscopy (NIRS) has shown a rapid and accurate technique for evaluation of materials of biological origin. The objective of this study was to evaluate the ability of the near infrared (NIR) spectroscopy associated to the Principal Component Analysis (PCA) for the separation of carbonization processes and identification of the origin of the woods used in the carbonizations. Hence, the charcoal of seven species of Eucalyptus and twenty native species from the Cerrado (savannah) of Minas Gerais, Brazil were investigated. The Eucalyptus wood was carbonized in a laboratory furnace and in a 190 m3 industrial rectangular kilns while the wood of native vegetation was carbonized only under laboratory conditions. The samples were grinded for NIR spectra acquirement. The NIR spectra were analyzed by PCA but no cluster were identified allowing discrimination between charcoal produced from native and from Eucalyptus wood. However, the cluster formed in the PCA when using the first derivative NIR spectra permitted to distinguish charcoal produced in different processes of carbonization. Two groups of data for charcoal produced in the industrial rectangular kilns were also observed, suggesting heterogeneity in the carbonization process. Key words: Charcoal origin, NIRS, principal component analysis. (résumé d'auteur)