Dissemin is shutting down on January 1st, 2025

Published in

Sociedade Brasileira de Química, SBQ, Journal of the Brazilian Chemical Society, 2014

DOI: 10.5935/0103-5053.20140069

Links

Tools

Export citation

Search in Google Scholar

Regioselective preparation of thiamphenicol esters through lipase-catalyzed processes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The lipase-catalyzed synthesis of thiamphenicol derivatives has been studied through complementary acylation and hydrolytic approaches, finding Candida antarctica lipase B as the most efficient biocatalyst for the selective modification of both thiamphenicol and thiamphenicol diacetate, respectively. The best results have been obtained using acylation reactions with different vinyl esters of variable length, yielding the corresponding 3'-monoesters with excellent yields and in short reaction times. The conditions have been analyzed in terms of substrate concentration, enzyme loading and type of acyl donor. The reuse of the enzyme for five-times without significant loss of the activity has also been demonstrated. Alternatively, the hydrolytic approach has allowed the preparation of some 1'-monoesters in good yields, although the reactivity and selectivity levels were lower than the ones achieved for the complementary acetylation reaction.