Links

Tools

Export citation

Search in Google Scholar

Novel Computational Technologies for Next-Generation Sequencing Data Analysis and Their Applications

Journal article published in 2015 by Chuan Yi Tang ORCID, Che-Lun Hung ORCID, Huiru Zheng ORCID, Chun-Yuan Lin ORCID, Hai Jiang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Next-generation sequencing (NGS) technologies, such as Illumina/Solexa, ABI/SOLiD, and Roche/454 Pyrosequencing, are revolutionizing the acquisition of genomic data at relatively low cost. NGS technologies are rapidly changing the approach to complex genomic studies, opening a way to the development of personalized drugs and personalized medicine. NGS technologies use massive throughput sequencing to obtain relatively short reads. NGS technologies will generate enormous datasets, in which even small genomic projects may generate terabytes of data. Therefore, new computational methods are needed to analyze a wide range of genetic information and to assist data interpretation and downstream applications, including high-throughput polymorphism detections, comparative genomics, prediction of gene function and protein structure, transcriptome analysis, mutation detection and confirmation, genome mapping, and drug design. The creation of large-scale datasets now poses a great computational challenge. It will be imperative to improve software pipelines, so that we can analyze genome data more efficiently.