BioMed Central, BMC Medicine, 1(13), 2015
DOI: 10.1186/s12916-015-0452-y
Full text: Download
Abstract Background The present study aims to evaluate the cost-effectiveness of extending the pre-2013 influenza immunisation programme for high-risk and elderly individuals to those at low risk of developing complications following infection with seasonal influenza. Methods We performed an economic evaluation comparing different extensions of the pre-2013 influenza programme to seven possible age groups of low-risk individuals (aged 2–4 years, 50–64 years, 5–16 years, 2–4 and 50–64 years, 2–16 years, 2–16 and 50–64 years, and 2–64 years). These extensions are evaluated incrementally on four base scenarios (no vaccination, risk group only with coverage as observed between 1995 and 2009, risk group and 65+, and risk group with 75 % coverage and 65+). Impact of vaccination is assessed using a transmission model built and parameterised from a previously published study. The study population is all individuals of all ages in England and Wales representing an average total of 52.6 million people over 14 influenza seasons (1995–2009). Results The influenza programme (risk group and elderly) prior to 2013 is likely to be cost effective (incremental cost effectiveness ratio: 7,475 £/QALY, net benefit: 253 M£ [15–829]). Extension to any one of the low-risk target groups defined earlier is likely to be cost-effective. However, strategies that do not include vaccination of school-aged children are less likely to be cost-effective. The most efficient strategy is extension to the 5–16 year age group while universal vaccination (extension to all low-risk individuals over 2 years) will achieve the highest net benefit. While extension to the 2–16 year age group is likely to be very cost effective, the cost-effectiveness of extensions beyond 2–16 years is very uncertain. Extension to the 5–16 year age group would likely remain cost-effective even without herd immunity effects to other age groups. As our study includes a strong historical component, our results depend on the efficacy of the influenza vaccine remaining at levels similar to the ones achieved in the past over a long-period of time (assumed to vary between 28 % and 70 % depending of the circulating strains and age groups). Conclusions Making use of surveillance data from over a decade in conjunction with a dynamic model, we find that vaccination of children in the United Kingdom is likely to be highly cost-effective, not only for their own benefit but also to reduce the disease burden in the rest of the community.