Published in

American Institute of Physics, The Journal of Chemical Physics, 22(138), p. 224907

DOI: 10.1063/1.4808354

Links

Tools

Export citation

Search in Google Scholar

Crystallization in a sheared colloidal suspension

Journal article published in 2013 by Boris Lander, Udo Seifert, Thomas Speck ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We study numerically the crystallization process in a supersaturated suspension of repulsive colloidal particles driven by simple shear flow. The effect of the shear flow on crystallization is two-fold: while it suppresses the initial nucleation, once a large enough critical nucleus has formed its growth is enhanced by the shear flow. Combining both effects implies an optimal strain rate at which the overall crystallization rate has a maximum. To gain insight into the underlying mechanisms, we employ a discrete state model describing the transitions between the local structural configurations around single particles. We observe a time-scale separation between these transitions and the overall progress of the crystallization allowing for an effective Markovian description. By using this model, we demonstrate that the suppression of nucleation is due to the inhibition of a pre-structured liquid.