Published in

Proceedings of the twenty-third annual symposium on Computational geometry - SCG '07

DOI: 10.1145/1247069.1247117

Links

Tools

Export citation

Search in Google Scholar

Between umbra and penumbra

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Computing shadow boundaries is a difficult problem in the case of non-point light sources. A point is in the umbra if it does not see any part of any light source; it is in full light if it sees entirely all the light sources; otherwise, it is in the penumbra. While the common boundary of the penumbra and the full light is well understood, less is known about the boundary of the umbra. In this paper we prove various bounds on the complexity of the umbra and the penumbra cast by a segment or polygonal light source on a plane in the presence of polygon or polytope obstacles. In particular, we show that a single segment light source may cast on a plane, in the presence of two triangles, four connected components of umbra and that two fat convex obstacles of total complexity n can engender Omega(n) connected components of umbra. In a scene consisting of a segment light source and k disjoint polytopes of total complexity n, we prove an Omega(nk^2+k^4) lower bound on the maximum number of connected components of the umbra and a O(nk^3) upper bound on its complexity. We also prove that, in the presence of k disjoint polytopes of total complexity n, some of which being light sources, the umbra cast on a plane may have Omega(n^2k^3 + nk^5) connected components and has complexity O(n^3k^3). These are the first bounds on the size of the umbra in terms of both k and n. These results prove that the umbra, which is bounded by arcs of conics, is intrinsically much more intricate than the full light/penumbra boundary which is bounded by line segments and whose worst-case complexity is in Omega(n alpha(k) +km +k^2) and O(n alpha(k) +km alpha(k) +k^2), where m is the complexity of the polygonal light source.