Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Chemical Theory and Computation, 10(9), p. 4332-4350, 2013

DOI: 10.1021/ct400382m

Links

Tools

Export citation

Search in Google Scholar

Molecular properties by Quantum Monte Carlo: an investigation on the role of the wave function ansatz and the basis set in the water molecule

Journal article published in 2013 by Andrea Zen, Ye Luo ORCID, Sandro Sorella, Leonardo Guidoni
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely: the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudo potential, and the basis set for QMC calculations. We also introduce a new strategy for the definition of the atomic orbitals involved in the Jastrow - Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. ; Comment: Reprinted (adapted) with permission from J. Chem. Theory Comput., DOI: 10.1021/ct400382m. Copyright (2013) American Chemical Society