Published in

MDPI, Genes, 3(6), p. 543-558, 2015

DOI: 10.3390/genes6030543

Links

Tools

Export citation

Search in Google Scholar

Chromatin Dynamics in the Regulation of CFTR Expression

Journal article published in 2015 by Nehal Gosalia ORCID, Ann Harris
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The contribution of chromatin dynamics to the regulation of human disease-associated loci such as the cystic fibrosis transmembrane conductance regulator (CFTR) gene has been the focus of intensive experimentation for many years. Recent technological advances in the analysis of transcriptional mechanisms across the entire human genome have greatly facilitated these studies. In this review we describe the complex machinery of tissue-specific regulation of CFTR expression, and put earlier observations in context by incorporating them into datasets generated by the most recent genomics methods. Though the gene promoter is required for CFTR expression, cell-type specific regulatory elements are located elsewhere in the gene and in flanking intergenic regions. Probably within its own topological domain established by the architectural proteins CTCF and cohesin, the CFTR locus utilizes chromatin dynamics to remodel nucleosomes, recruit cell-selective transcription factors, and activate intronic enhancers. These cis-acting elements are then brought to the gene promoter by chromatin looping mechanisms, which establish long-range interactions across the locus. Despite its complexity, the CFTR locus provides a paradigm for elucidating the critical role of chromatin dynamics in the transcription of individual human genes.