Published in

American Geophysical Union, Geophysical Research Letters, 5(38), p. n/a-n/a, 2011

DOI: 10.1029/2010gl046520

Links

Tools

Export citation

Search in Google Scholar

Impacts of HOxregeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres: CLIMATE SENSITIVITY TO HOxREGENERATION

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A global chemistry-climate model is used to assess the impact on atmospheric composition of the regeneration and recycling of HOx in the photo-oxidation of isoprene. The impact is explored subject to present-day, pre-industrial and future climate/emission scenarios. Our calculations show that, in all cases, the inclusion of uni-molecular isomerisations of the isoprene hydroxy-peroxy radicals leads to enhanced production of HOx radicals and ozone. The global burden of ozone increases by 25–36 Tg (8–18%), depending on the climate/emissions scenario, whilst the changes in OH lead to decreases in the methane lifetime of between 11% in the future and 35% in the pre-industrial. Critically the size of the change in methane lifetime depends on the VOC/NOx emission ratio. The results of the present-day calculations suggest a certain amount of parameter refinement is still needed to reconcile the updated chemistry with field observations (particularly for HO2+RO2). However, the updated chemistry could have far-reaching implications for: future-climate predictions; projections of future oxidising capacity; and our understanding of past changes in oxidising capacity.