Published in

American Chemical Society, Journal of Physical Chemistry Letters, 12(6), p. 2216-2222, 2015

DOI: 10.1021/acs.jpclett.5b00811

Links

Tools

Export citation

Search in Google Scholar

Ultrafast Dynamics of Carboxy-Hemoglobin: Two-Dimensional Infrared Spectroscopy Experiments and Simulations

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This Letter presents a comparison between experimental and simulated 2D mid-infrared spectra of carboxy-hemoglobin in the spectral region of the carbon monoxide stretching mode. The simulations rely on a fluctuating potential energy surface that includes both the effect of heme and the protein surroundings computed from molecular dynamics simulations. A very good agreement between theory and experiment is obtained with no adjustable parameters. The simulations show that the effect of the distal histidine through the hydrogen bond is strong and is directly responsible for the slow decay of the frequency–frequency correlation function on a 10 ps time scale. This study confirms that fluctuations in carboxy-hemoglobin are more inhomogeneous than those in the more frequently studied carboxy-myoglobin. The comparison between simulations and experiments brings valuable information on the complex relation between protein structure and spectral diffusion.