Published in

European Geosciences Union, Biogeosciences, 1(13), p. 323-340, 2016

DOI: 10.5194/bg-13-323-2016

European Geosciences Union, Biogeosciences Discussions, 19(12), p. 16431-16477

DOI: 10.5194/bgd-12-16431-2015

Links

Tools

Export citation

Search in Google Scholar

Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during 5 cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauritania.The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (−629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (−249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with the biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production, a significant different source should be considered.The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors.