Published in

Elsevier, Thin Solid Films, (589), p. 145-152

DOI: 10.1016/j.tsf.2015.04.057

Links

Tools

Export citation

Search in Google Scholar

Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cadmium sulfide nanoparticle (NP) deposition by the successive ionic layer adsorption and reaction (SILAR) method on the surface of mesoporous ZnO micro-platelets with a large specific surface area (110 ± 10 m2g− 1) results in the formation of ZnO/CdS heterostructures exhibiting a high incident photon-to-current conversion efficiency (Y) not only within the region of CdS fundamental absorption (Ymax = 90%; 0.1 M Na2S + 0.1 M Na2SO3), but also in the sub-band-gap (SBG) range (Ymax = 25%). The onset potentials of SBG photoelectrochemical processes are more positive than the band-gap (BG) onset potential by up to 100 mV. A maximum incident photon-to-current conversion efficiency value for SBG processes is observed at larger amount of deposited CdS in comparison with the case of BG ones. The Urbach energy (EU) of CdS NPs determined from the photocurrent spectra reaches a maximal value on an early deposition stage (EU = 93 mV at SILAR cycle number N = 5), then lowers somewhat (EU = 73 mV at N = 10) and remains steady in the range of N from 20 to 300 (EU = 67 ± 1 mV). High efficiency of the photoelectrochemical SBG processes are interpreted in terms of light scattering in the ZnO/CdS heterostructures.