Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Insect Molecular Biology, (19), p. 249-258, 2010

DOI: 10.1111/j.1365-2583.2009.00942.x

Links

Tools

Export citation

Search in Google Scholar

Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The pea aphid genome includes 66 genes contributing to amino acid biosynthesis and 93 genes to amino acid degradation. In several respects, the pea aphid gene inventory complements that of its symbiotic bacterium, Buchnera aphidicola (Buchnera APS). Unlike other insects with completely sequenced genomes, the pea aphid lacks the capacity to synthesize arginine, which is produced by Buchnera APS. However, consistent with other insects, it has genes coding for individual reactions in essential amino acid biosynthesis, including threonine dehydratase and branched-chain amino acid aminotransferase, which are not coded in the Buchnera APS genome. Overall the genome data suggest that the biosynthesis of certain essential amino acids is shared between the pea aphid and Buchnera APS, providing the opportunity for precise aphid control over Buchnera metabolism.