Published in

American Chemical Society, The Journal of Physical Chemistry A, 20(112), p. 4601-4607, 2008

DOI: 10.1021/jp801042p

Links

Tools

Export citation

Search in Google Scholar

A Microwave and Quantum Chemical Study of Cyclopropanethiol

Journal article published in 2008 by Rajmund Mokso, Harald Mollendal, Jean-Claude Guillemin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The microwave spectra of cyclopropanethiol, C(3)H(5)SH, and one deuterated species C(3)H(5)SD, have been investigated in the 20 - 80 GHz frequency range. The spectra of the ground vibrational state and of three vibrationally excited states of the parent species of a conformer which has a synclinal ("gauche") arrangement for the H-C-S-H chain of atoms, was assigned. The H-C-S-H dihedral angle is 76(5)° from synperiplanar (0°). The b-type transitions of the ground and of the vibrationally excited states of the parent species were split into two components, which is assumed to arise from tunneling of the proton of the thiol group between two equivalent synclinal potential wells. No splitting was resolved in the spectrum of C(3)H(5)SD. The tunneling frequency of the ground vibrational state of C(3)H(5)SH is 1.664(22) MHz. The tunneling frequency of the first excited-state of the C-S torsion is 52.330(44) MHz, whereas this frequency is 26.43(13) and 3.286(61) MHz, respectively, for the first excited states of the two lowest bending vibrations. The dipole moment of the ground vibrational state of the parent species is μ(a) = 4.09(5), μ(b) = 2.83(11), μ(c) = 0.89(32), and μ(tot) = 5.06(16) × 10(-30) C m. The microwave study has been augmented by high-level density functional and ab initio quantum chemical calculations.