Published in

American Chemical Society, The Journal of Physical Chemistry A, 52(113), p. 15328-15345, 2009

DOI: 10.1021/jp906299v

Links

Tools

Export citation

Search in Google Scholar

Crossed-beam dynamics, low-temperature kinetics, and theoretical studies of the reaction S(1D) + C2H4.

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reaction between sulfur atoms in the first electronically excited state, S((1)D), and ethene (C(2)H(4)) has been investigated in a complementary fashion in (a) crossed-beam dynamic experiments with mass spectrometric detection and time-of-flight (TOF) analysis at two collision energies (37.0 and 45.0 kJ mol(-1)), (b) low temperature kinetics experiments ranging from 298 K down to 23 K, and (c) electronic structure calculations of stationary points and product energetics on the C(2)H(4)S singlet and triplet potential energy surfaces. The rate coefficients for total loss of S((1)D) are found to be very large (ca. 4 x 10(-10) cm(3) molecule(-1) s(-1)) down to very low temperatures indicating that the overall reaction is barrierless. From laboratory angular and TOF distributions at different product masses, three competing reaction channels leading to H + CH(2)CHS (thiovinoxy), H(2) + CH(2)CS (thioketene), and CH(3) + HCS (thioformyl) have been unambiguously identified and their dynamics characterized. Product branching ratios have also been estimated. Interpretation of the experimental results on the reaction kinetics and dynamics is assisted by high-level theoretical calculations on the C(2)H(4)S singlet potential energy surface. RRKM (Rice-Ramsperger-Kassel-Marcus) estimates of the product branching ratios using the newly developed singlet potential energy surface have also been performed and compared with the experimental determinations.