Published in

American Chemical Society, Energy and Fuels, 11(24), p. 5859-5875

DOI: 10.1021/ef101255w

Links

Tools

Export citation

Search in Google Scholar

Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

-Hexanol is among the promising renewable long-chain alcohols usable as an alternative to petrol-derived gasoline and diesel fuels. To better understand the combustion characteristics of 1-hexanol, new experimental data for the oxidation and combustion of 1-hexanol were obtained. Stable species concentration profiles were measured in a jet stirred reactor (JSR) at 10 atm over a range of equivalence ratios and temperatures. Burning velocities of 1-hexanol/air mixtures were measured at 1−10 bar and 423 K, over a range of equivalence ratios. The effect of total pressure on flame speed was determined. The oxidation of 1-hexanol in these experimental conditions was modeled using an extended detailed chemical kinetic reaction mechanism (2977 reactions involving 600 species). The proposed mechanism shows good agreement with the present experimental data. Reaction path analyses and sensitivity analyses were performed to interpret the results.