Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 8(100), p. 4604-4609, 2003

DOI: 10.1073/pnas.0730860100

Links

Tools

Export citation

Search in Google Scholar

A GTP-driven motor moves proteins across the outer envelope of chloroplasts

Journal article published in 2003 by Enrico Schleiff, Marko Jelic, Jürgen Soll
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The translocation of proteins across cellular membranes is a key mechanistic problem for every cell. The preprotein translocon at the chloroplast outer envelope is responsible for precursor protein recognition and translocation across the outer envelope. We have reconstituted the translocation process into proteoliposomes from single subunits or by using the purified translocon. Precursor proteins are recognized by the Toc34 receptor in an initial GTP-dependent process. Translocation across the plane of the membrane then occurs through the Toc75 channel in a GTP-dependent process. Correspondingly, GTP hydrolysis of Toc proteoliposomes is 100-fold enhanced in the presence of preprotein. Complete translocation is demonstrated by processing of the precursor form to the mature form by the stromal processing peptidase and by protease resistance of the imported protein. Molecular chaperones are not involved in this translocation event. We show that Toc159 acts as a GTP-driven motor in a sewing-machine-like mechanism.