Published in

Elsevier, Journal of Experimental Marine Biology and Ecology, 2(352), p. 295-305

DOI: 10.1016/j.jembe.2007.08.006

Links

Tools

Export citation

Search in Google Scholar

Net and gross incorporation of nitrogen by marine copepods fed on 15N labelled diatoms: methodology and trophic studies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The stable isotope of nitrogen (15N) and an appropriate three-compartment model were used in two 24-h lasting feeding experiments to trace the flow of N through the copepod Acartia discaudata and Calanus helgolandicus fed on 15N-labelled Skeletonema costatum and Thalassiosira weissflogii, respectively. Details of the labelling technique and principles of the computation of N transport rates are given. At the end of a single 24-h feeding period only about one third of the total amount of N ingested by A. discaudata was incorporated into the copepod's body N; we refer to this rate as net incorporation. Most of the N ingested was lost as ammonium (48% of total N ingested), followed by losses in the form of eggs + fecal pellets (13%) and dissolved organic N (DON, 9%). The sum of net incorporation and the latter losses is defined as gross incorporation. Net incorporation by C. helgolandicus and N losses did not vary over time during a 24 h lasting time-series feeding experiment. On average, 79% of total N ingested was actually incorporated by the copepod whereas mean N losses as ammonium, eggs + fecal pellets represented only 12 and 9%, respectively. After a 24-h feeding period only 2% of N ingested was lost as DON. Inspection of individual DON pathways showed that both A. discaudata and C. helgolandicus highly contributed to total DON production via direct excretion (79 and 64%, respectively). The remaining DON appearing in the DON pool was derived from phytoplankton via direct release and/or indirect release (copepod ‘sloppy feeding’).