Published in

American Chemical Society, Journal of The American Society for Mass Spectrometry, 1(23), p. 7-11, 2011

DOI: 10.1007/s13361-011-0279-5

Links

Tools

Export citation

Search in Google Scholar

Efficient structural characterization of poly(methacrylic acid) by activated-electron photodetachment dissociation.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Characterization of end-groups in poly(methacrylic acid) (PMAA) was achieved using tandem mass spectrometry after activated-electron photodetachment dissociation (activated-EPD). In this technique, multiply deprotonated PMAA oligomers produced in the negative-ion mode of electrospray ionization were oxidized into radical anions upon electron photodetachment using a 220 nm laser wavelength, and further activated by collision. In contrast to conventional collision induced dissociation of negatively charged PMAA, which mainly consists of multiple dehydration steps, fragmentation of odd-electron species is shown to proceed via a radical-induced decarboxylation, followed by reactions involving backbone bond cleavages, giving rise to product ions containing one or the other oligomer termination. A single radical-induced mechanism accounts for the four main fragment series observed in MS/MS. The relative position of the radical and of the anionic center in distonic precursor ions determines the nature of the reaction products. Experiments performed using PMAA sodium salts allowed us to account for relative abundances of product ions in series obtained from PMAA, revealing that ion stability is ensured by hydrogen bonds within pairs of MAA units.