Published in

Wiley, Immunological Reviews, 1(234), p. 177-198, 2010

DOI: 10.1111/j.0105-2896.2009.00868.x

Links

Tools

Export citation

Search in Google Scholar

Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

During evolution, vertebrates have developed an adaptive immune system able to cope with a variety of pathogens. Dendritic cells (DCs) are central to this process. DCs integrate information derived from pathogens or endogenous danger signals and convey them to T lymphocytes. Most of the present knowledge on DCs was generated in mice or by using human DCs differentiated in vitro from monocytes. In both species, several DC subsets have been identified in vivo based on differences in their phenotypes, anatomical locations or functions. In mice, protective immunity against intracellular pathogens or tumors can be induced most efficiently by targeting antigens to the CD8 alpha(+) DCs, a subset of DCs which resides in lymphoid tissues and is especially efficient at cross-presenting exogenous antigens to CD8(+) T lymphocytes. In contrary, harnessing human DC subsets for medical purposes is currently hampered by insufficient knowledge about these cells. To overcome this cognitive gap, we are using comparative genomics as a tool for designing hypotheses and experiments to further characterize DC subset functions and their molecular control, including the investigation of the functional equivalences that might exist between human and mouse DC subsets.