Published in

American Astronomical Society, Astrophysical Journal, 1(695), p. 171-182, 2009

DOI: 10.1088/0004-637x/695/1/171

Links

Tools

Export citation

Search in Google Scholar

The Environments of Active Galactic Nuclei within the zCOSMOS Density Field

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

13 pages; 11 figures; To appear in The Astrophysical Journal ; International audience ; The impact of environment on AGN activity up to z~1 is assessed by utilizing a mass-selected sample of galaxies from the 10k catalog of the zCOSMOS spectroscopic redshift survey. We identify 147 AGN by their X-ray emission as detected by XMM-Newton from a parent sample of 7234 galaxies. We measure the fraction of galaxies with stellar mass M_*>2.5x10^10 Msun that host an AGN as a function of local overdensity using the 5th, 10th and 20th nearest neighbors that cover a range of physical scales (~1-4 Mpc). Overall, we find that AGNs prefer to reside in environments equivalent to massive galaxies with substantial levels of star formation. Specifically, AGNs with host masses between 0.25-1x10^11 Msun span the full range of environments (i.e., field-to-group) exhibited by galaxies of the same mass and rest-frame color or specific star formation rate. Host galaxies having M_*>10^11 Msun clearly illustrate the association with star formation since they are predominantly bluer than the underlying galaxy population and exhibit a preference for lower density regions analogous to SDSS studies of narrow-line AGN. To probe the environment on smaller physical scales, we determine the fraction of galaxies (M_*>2.5x10^10 Msun) hosting AGNs inside optically-selected groups, and find no significant difference with field galaxies. We interpret our results as evidence that AGN activity requires a sufficient fuel supply; the probability of a massive galaxy to have retained some sufficient amount of gas, as evidence by its ongoing star formation, is higher in underdense regions where disruptive processes (i.e., galaxy harrassment, tidal stripping) are lessened.