Published in

Oxford University Press (OUP), Human Molecular Genetics, 5(16), p. 529-536

DOI: 10.1093/hmg/ddl485

Links

Tools

Export citation

Search in Google Scholar

Evidence for a molecular link between the Tuberous Sclerosis complex and the Crumbs complex

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In human, mutations in tuberous sclerosis complex protein 1 or 2 (TSC1/2 or hamartin/tuberin) cause tuberous sclerosis characterized by the occurrence of multiple hamartomas. On the other hand, mutations in the Crumbs homolog-1 (CRB1) gene cause retinal degeneration diseases including Leber congenital amaurosis and retinitis pigmentosa type 12. Here we report, using a two-hybrid assay, a direct molecular interaction between TSC2 C-terminal part and PDZ 2 and 3 of PATJ, a scaffold member of the Crumbs 3 (CRB 3) complex in human intestinal epithelial cells, Caco2. TSC2 interacts not only with PATJ, but also with the whole CRB 3 complex by GST-pull down assays. In addition, TSC2 co-immunoprecipitates and co-localizes partially with PATJ at the level of the tight junctions. Furthermore, depletion of PATJ from Caco2 cells induces an increase in mammalian Target Of Rapamycin Complex 1 (mTORC1) activity, which is totally inhibited by rapamycin. In contrast, in the same cells, inhibition of phosphoinositol-3 kinase (PI-3K) by wortmannin does not abolish rpS6 phosphorylation. These functional data indicate that the Crumbs complex is a potential regulator of the mTORC1 pathway, cell metabolism and survival through a direct interaction with TSC1/2.