Published in

Wiley, Functional Ecology, 3(23), p. 488-495, 2009

DOI: 10.1111/j.1365-2435.2009.01543.x

Links

Tools

Export citation

Search in Google Scholar

Plant defence against nematodes is not mediated by changes in the soil microbial community

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

1. Indirect plant defence, the recruitment of antagonists of herbivores, is well-known above the ground. In spite of various soil microorganisms acting as antagonists to root herbivores, it is still largely unknown whether plants can promote antagonistic microorganisms as an indirect defence mechanism. 2. In a greenhouse study we examined whether soil microorganisms could mediate plant defence against plant-feeding nematodes. Growth, nutrient contents and root exudation of three plant species (Plantago lanceolata, Holcus lanatus, Lotus corniculatus) and the performance of nematodes and fungal communities in the rhizospheres were measured. 3. The plant species differed in their effects on plant-feeding nematodes; however, the addition of soil microorganisms did not enhance nematode control. Nematode addition changed root exudation patterns and rhizosphere fungal community structure in a plant species-specific manner. Glucose levels in the root exudates of all three examined plant species were enhanced, and P. lanceolata root exudates contained higher levels of fumaric acid when nematodes had been added. 4. We conclude that nematodes have plant species-specific effects on root exudate chemistry and rhizosphere fungal community composition, but these effects do not necessarily enhance indirect control of nematodes by antagonistic microorganisms. More studies on below-ground plant defence are definitely needed. ; 1. Indirect plant defence, the recruitment of antagonists of herbivores, is well-known above the ground. In spite of various soil microorganisms acting as antagonists to root herbivores, it is still largely unknown whether plants can promote antagonistic microorganisms as an indirect defence mechanism. 2. In a greenhouse study we examined whether soil microorganisms could mediate plant defence against plant-feeding nematodes. Growth, nutrient contents and root exudation of three plant species (Plantago lanceolata, Holcus lanatus, Lotus corniculatus) and the performance of nematodes and fungal communities in the rhizospheres were measured. 3. The plant species differed in their effects on plant-feeding nematodes; however, the addition of soil microorganisms did not enhance nematode control. Nematode addition changed root exudation patterns and rhizosphere fungal community structure in a plant species-specific manner. Glucose levels in the root exudates of all three examined plant species were enhanced, and P. lanceolata root exudates contained higher levels of fumaric acid when nematodes had been added. 4. We conclude that nematodes have plant species-specific effects on root exudate chemistry and rhizosphere fungal community composition, but these effects do not necessarily enhance indirect control of nematodes by antagonistic microorganisms. More studies on below-ground plant defence are definitely needed.