Published in

American Geophysical Union, Journal of Geophysical Research, D5(114), 2009

DOI: 10.1029/2008jd010696

Links

Tools

Export citation

Search in Google Scholar

Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65°S to 79°N

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The comprehensive isotopic composition of atmospheric nitrate (i.e., the simultaneous measurement of all its stable isotope ratios: 15N/14N, 17O/16O and 18O/16O) has been determined for aerosol samples collected in the marine boundary layer (MBL) over the Atlantic Ocean from 65°S (Weddell Sea) to 79°N (Svalbard), along a ship-borne latitudinal transect. In nonpolar areas, the δ 15N of nitrate mostly deriving from anthropogenically emitted NO x is found to be significantly different (from 0 to 6‰) from nitrate sampled in locations influenced by natural NO x sources (−4 ± 2)‰. The effects on δ 15N(NO3 −) of different NO x sources and nitrate removal processes associated with its atmospheric transport are discussed. Measurements of the oxygen isotope anomaly (Δ17O = δ 17O − 0.52 × δ 18O) of nitrate suggest that nocturnal processes involving the nitrate radical play a major role in terms of NO x sinks. Different Δ17O between aerosol size fractions indicate different proportions between nitrate formation pathways as a function of the size and composition of the particles. Extremely low δ 15N values (down to −40‰) are found in air masses exposed to snow-covered areas, showing that snowpack emissions of NO x from upwind regions can have a significant impact on the local surface budget of reactive nitrogen, in conjunction with interactions with active halogen chemistry. The implications of the results are discussed in light of the potential use of the stable isotopic composition of nitrate to infer atmospherically relevant information from nitrate preserved in ice cores.