Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 3(445), p. 2854-2871

DOI: 10.1093/mnras/stu1920

Links

Tools

Export citation

Search in Google Scholar

Chemical modelling of water deuteration in IRAS16293-2422

Journal article published in 2014 by V. Wakelam ORCID, C. Vastel, Y. Aikawa, A. Coutens, S. Bottinelli, E. Caux
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

IRAS 16293-2422 is a well studied low-mass protostar characterized by a strong level of deuterium fractionation. In the line of sight of the protostellar envelope, an additional absorption layer, rich in singly and doubly deuterated water has been discovered by a detailed multiline analysis of HDO. To model the chemistry in this source, the gas-grain chemical code Nautilus has been used with an extended deuterium network. For the protostellar envelope, we solve the chemical reaction network in infalling fluid parcels in a protostellar core model. For the foreground cloud, we explored several physical conditions (density, cosmic ionization rate, C/O ratio). The main results of the paper are that gas-phase abundances of H2O, HDO and D2O observed in the inner regions of IRAS16293-2422 are lower than those predicted by a 1D dynamical/chemical (hot corino) model in which the ices are fully evaporated. The abundance in the outer part of the envelope present chaotic profiles due to adsorption/evaporation competition, very different from the constant abundance assumed for the analysis of the observations. We also found that the large abundances of gas-phase H2O, HDO and D2O observed in the absorption layer are more likely explained by exothermic surface reactions rather than photodesorption processes. ; Comment: 20 pages, 15 figures. This version is slightly different from the published one because of language editor's modifications