Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Global and Planetary Change, 1-2(68), p. 132-148

DOI: 10.1016/j.gloplacha.2009.03.021

Links

Tools

Export citation

Search in Google Scholar

Influence of regional parameters on the surface mass balance of the Eurasian ice sheet during the peak Saalian (140 kya)

Journal article published in 2009 by F. Colleoni ORCID, G. Krinner, M. Jakobsson, V. Peyaud, C. Ritz ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent geologically-based reconstructions of the Eurasian ice sheet show that during the peak Saalian (≈ 140 kya) the ice sheet was larger over Eurasia than during the Last Glacial Maximum (LGM) at ≈ 21 kya. To address this problem we use the LMDZ4 atmospheric general circulation model to evaluate the impact on the Saalian ice sheet's surface mass balance (SMB) from proglacial lakes, dust deposition on snow, vegetation and sea surface temperatures (SST) since geological records suggest that these environmental parameters were different during the two glacial periods. Seven model simulations have been carried out. Dust deposition decreases the mean SMB by intensifying surface melt during summer while proglacial lakes cool the summer climate and reduce surface melt on the ice sheet. A simulation including both proglacial lakes and dust shows that the presence of the former parameter reduces the impact of the latter, in particular, during summer. A switch from needle-leaf to tundra vegetation affects the regional climate but not enough to significantly influence the SMB of the nearby ice margin. However, a steady-state vegetation in equilibrium with the climate should be computed to improve the boundary conditions for further evaluations of the vegetation impact on the ice sheet's SMB. Finally, changes of the SST broadly affect the regional climate with significant consequences for the SMB.