Published in

American Chemical Society, Langmuir, 8(25), p. 4251-4255, 2009

DOI: 10.1021/la803913e

Links

Tools

Export citation

Search in Google Scholar

Evidence of the Substrate Effect in Hydrogen Electroinsertion into Palladium Atomic Layers by Means of in Situ Surface X-ray Diffraction

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, we report an in situ surface X-ray diffraction study of the hydrogen electroinsertion in a two-monolayer equivalent palladium electrodeposit on Pt(111). The role of chloride in the deposition solution in favoring layer-by-layer film growth is evidenced. Three Pd layers are necessary to describe the deposit structure correctly, but the third-layer occupancy is quite low, equal to about 0.22. As a major result, resistance to hydriding of the two atomic Pd layers closest to the Pt interface is observed, which is linked to a strong effect of the Pt(111) substrate. As a consequence, we observe the lowering of the total hydride stoichiometry compared to bulk Pd. Our measurements also reveal good reversibility of the deposit structure, at least toward one hydrogen insertion−desorption cycle.