Published in

Trans Tech Publications, Journal of Nano Research, (25), p. 67-76, 2013

DOI: 10.4028/www.scientific.net/jnanor.25.67

Links

Tools

Export citation

Search in Google Scholar

Structural and Morphological Changes In Ag:TiN Nanocomposite Films promoted by in-vacuum annealing

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Thin films composed of titanium nitride doped with silver were deposited by DC reactive sputtering, with Ag contents varying between 0 and 50 at.%. The as-deposited samples were subjected to vacuum annealing treatments, with a range of temperatures varying from 200 to 500 °C, in order to study the morphological and structural changes that may occur. The as-deposited samples showed three main zones of basic characteristics, which differ both in terms of morphology and structural features. By increasing the annealing temperature, the thermodynamic stability is accelerated, giving rise to (i) a uniform dispersion of silver particles at 200 °C; (ii) the start of segregation at 300 °C; (iii) at 400 °C the coalescence of the segregated Ag particles takes place and finally (iv) at 500 °C the formation of large Ag clusters is evident, particularly within the zone that comprises the samples with higher Ag content. In addition to corroborate the presence of free Ag in Ag:TiN thin films, the increasing annealing temperature promotes the improvement of the coating's crystallinity, as well as Ag grain growth.