Published in

Society of Photo-optical Instrumentation Engineers, Proceedings of SPIE, 2004

DOI: 10.1117/12.524751

Links

Tools

Export citation

Search in Google Scholar

Fabrication and characterization of high-Q microresonators using thin plate mechanical mode

Proceedings article published in 2004 by Jean-Rene Coudevylle ORCID, Skandar Basrour, Michel de Labachelerie
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The growing place of electronics devices in our society increases the demand of small devices such as RF filters, time references and oscillators. The aim of this work concerns the design and characterization of a new kind of crystalline silicon microresonator fabricated using a DRIE (Deep Reactive Ion Etching) technique. This device can be fabricated by IC compatible techniques. This kind of microresonators is electrostatically actuated and uses a contour or Lamý mode as fundamental mode of vibration. Its size gives the resonant frequency and behavior. The mechanical characterization of one microresonator is carried out using an optical bench set-up. The first results obtained on a device show a high Q factor in air close to 1000 at the resonant frequency of 10.3 MHz.