Published in

American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, 12(33), p. 2818-2829, 2013

DOI: 10.1161/atvbaha.113.302012

Links

Tools

Export citation

Search in Google Scholar

Pericyte Regulation of Vascular Remodeling Through the CXC Receptor 3

Journal article published in 2013 by Richard J. Bodnar, Margaret E. Rodgers, William C. W. Chen ORCID, Alan Wells
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective— To understand the role, if any, played by pericytes in the regulation of newly formed vessels during angiogenesis. In this study, we investigate whether pericytes regulate the number of nascent endothelial tubes. Approach and Results— Using an in vitro angiogenesis assay (Matrigel assay), we demonstrate that pericytes can inhibit vessel formation and induce vessel dissociation via CXCR3-induced involution of the endothelial cells. In a coculture Matrigel assay for cord formation, pericytes prevented endothelial cord formation of human dermal microvascular endothelial cells but not umbilical vein endothelial cells. Blockade of endothelial CXCR3 function or expression inhibited the repressing effect of the pericytes. We further show that pericytes are also able to induce regression of newly formed microvascular cords through CXCR3 activation of calpain. When CXCR3 function was inhibited by a neutralizing antibody or downregulated by siRNA, cord regression mediated by pericytes was abolished. Conclusions— We show for the first time that pericytes regulate angiogenic vessel formation, and that this is mediated through CXCR3 expressed on endothelial cells. This suggests a role for pericytes in the pruning of immature vessels overproduced during wound repair.