Dissemin is shutting down on January 1st, 2025

Published in

MDPI, International Journal of Molecular Sciences, 8(16), p. 19960-19977, 2015

DOI: 10.3390/ijms160819960

Links

Tools

Export citation

Search in Google Scholar

Inhibition of NF-κB in Tumor Cells Exacerbates Immune Cell Activation Following Photodynamic Therapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Although photodynamic therapy (PDT) yields very good outcomes in numerous types of superficial solid cancers, some tumors respond suboptimally to PDT. Novel treatment strategies are therefore needed to enhance the efficacy in these therapy-resistant tumors. One of these strategies is to combine PDT with inhibitors of PDT-induced survival pathways. In this respect, the transcription factor nuclear factor κB (NF-κB) has been identified as a potential pharmacological target, albeit inhibition of NF-κB may concurrently dampen the subsequent anti-tumor immune response required for complete tumor eradication and abscopal effects. In contrast to these postulations, this study demonstrated that siRNA knockdown of NF-κB in murine breast carcinoma (EMT-6) cells increased survival signaling in these cells and exacerbated the inflammatory response in murine RAW 264.7 macrophages. These results suggest a pro-death and immunosuppressive role of NF-κB in PDT-treated cells that concurs with a hyperstimulated immune response in innate immune cells.