Published in

Taylor and Francis Group, Connective Tissue Research, 5-6(55), p. 403-410, 2014

DOI: 10.3109/03008207.2014.959120

Links

Tools

Export citation

Search in Google Scholar

Pulse-Chase Analysis of Procollagen Biosynthesis by Azidohomoalanine Labeling

Journal article published in 2014 by Lynn S. Mirigian, Elena Makareeva, Sergey Leikin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Disruptions in procollagen synthesis, trafficking and secretion by cells occur in multiple connective tissue diseases. Traditionally, these disruptions are studied by pulse-chase labeling with radioisotopes. However, significant DNA damage, excessive accumulation of reactive oxygen species and formation of other free radicals have been well documented in the literature at typical radioisotope concentrations used for pulse-chase experiments. Therefore, it is important to keep in mind that the resulting cell stress response might affect interpretation of the data, particularly with respect to abnormal function of procollagen-producing cells. Here, we describe an alternative method of pulse-chase procollagen labeling with azidohomoalanine, a noncanonical amino acid that replaces methionine in newly synthesized protein chains and can be detected via highly selective click chemistry reactions. At least in fibroblast culture, this approach is more efficient than traditional radioisotopes and has fewer, if any unintended effects on cell function. To illustrate its applications, we demonstrate delayed procollagen folding and secretion by cells from an osteogenesis imperfecta patient with a Cys substitution for Gly766 in the triple helical region of the α1(I) chain of type I procollagen.