Dissemin is shutting down on January 1st, 2025

Published in

Society for Neuroscience, Journal of Neuroscience, 12(33), p. 5399-5410, 2013

DOI: 10.1523/jneurosci.4707-12.2013

Links

Tools

Export citation

Search in Google Scholar

Protein Tyrosine Phosphatase Receptor Type O Inhibits Trigeminal Axon Growth and Branching by Repressing TrkB and Ret Signaling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Axonal branches of the trigeminal ganglion (TG) display characteristic growth and arborization patterns during development. Subsets of TG neurons express different receptors for growth factors, but these are unlikely to explain the unique patterns of axonal arborizations. Intrinsic modulators may restrict or enhance cellular responses to specific ligands and thereby contribute to the development of axon growth patterns. Protein tyrosine phosphatase receptor type O (PTPRO), which is required for Eph receptor-dependent retinotectal development in chick and for development of subsets of trunk sensory neurons in mouse, may be such an intrinsic modulator of TG neuron development. PTPRO is expressed mainly in TrkB-expressing (TrkB+) and Ret+mechanoreceptors within the TG during embryogenesis. InPTPROmutant mice, subsets of TG neurons grow longer and more elaborate axonal branches. CulturedPTPRO−/−TG neurons display enhanced axonal outgrowth and branching in response to BDNF and GDNF compared with control neurons, indicating that PTPRO negatively controls the activity of BDNF/TrkB and GDNF/Ret signaling. Mouse PTPRO fails to regulate Eph signaling in retinocollicular development and in hindlimb motor axon guidance, suggesting that chick and mouse PTPRO have different substrate specificities. PTPRO has evolved to fine tune growth factor signaling in a cell-type-specific manner and to thereby increase the diversity of signaling output of a limited number of receptor tyrosine kinases to control the branch morphology of developing sensory neurons. The regulation of Eph receptor-mediated developmental processes by protein tyrosine phosphatases has diverged between chick and mouse.