Elsevier, Nuclear Physics A, (758), p. 775-778
DOI: 10.1016/j.nuclphysa.2005.05.192
Full text: Unavailable
The recent WMAP results tightly constrain the baryon density in the universe, which in turn constrains the light element abundance predicted in Standard Big Bang Nucleosynthesis (SBBN). There is a discrepance in the $^7$Li abundance which cannot be explained by uncertainties in the main reactions included in the SBBN. Up to now, the influence of the reaction $^7Be(d,p)2α$ has been neglected. We have investigated this reaction at SBBN energies using a radioactive $^7$Be beam and a $(CD_2)_n$ self-supporting target at the CYCLONE RIB facility at Louvain-la-Neuve. The experimental method is briefly described. Preliminary results and consequences for primordial nucleosynthesis are discussed.