Published in

Elsevier, Journal of Chromatography A, (1363), p. 348-355, 2014

DOI: 10.1016/j.chroma.2014.08.045

Links

Tools

Export citation

Search in Google Scholar

Interactions of non-charged tadalafil stereoisomers with cyclodextrins: Capillary electrophoresis and nuclear magnetic resonance studies

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The single isomer drug R,R-tadalafil (Cialis(®)) contains two chiral centers thus four stereoisomers (R,R-, S,S-, S,R- and R,S-tadalafil) exist, however, only the most potent inhibitor, the R,R-tadalafil is in clinical use. In our study, over 20 charged cyclodextrin (CD) derivatives were studied for enantiospecific host-guest type interactions in CD-modified capillary electrophoresis. Tadalafil stereoisomers are non-charged; therefore, their electrophoretic separation poses a challenge. Several candidates of both positively and negatively charged hosts were found to be effective for the enantioseparation. Eight out of the beta derivatives and three of alpha derivatives (including sulfated, sulfoalkylated, carboxyalkylated and amino derivatives) resolved all four stereoisomers partially or completely. Cavity size-dependent absolute enantiomer migration order (EMO) reversals were observed in the case of sulfopropyl-alpha (EMO: R,S; S,R; R,R; S,S) and sulfopropyl-beta (S,S; R,R; S,R; R,S) derivatives, while substituent-dependent partial EMO reversals were detected for sulfobutyl-ether-alpha (R,S; S,R; S,S; R,R) and sulfated-alpha-CD (R,R; S,S; R,S; S,R) selectors. Complexation-induced (1)H NMR chemical shift changes reflected that the benzodioxole moiety plays a major role in cavity size-dependent EMO reversal. Sulfobutyl-ether-alpha-CD was the only selector that provided the desired EMO in which the clinically applied eutomer R,R-tadalafil migrates last. Finally, an electrophoretic method applying a background electrolyte (BGE) containing 75mM Tris-acetic acid buffer (pH 4.75) and 7mM sulfobutyl-ether-alpha-CD was developed for the baseline resolution of all isomers at 25°C and +25kV applied voltage.