Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Developmental Cell, 1(24), p. 98-111, 2013

DOI: 10.1016/j.devcel.2012.11.012

Links

Tools

Export citation

Search in Google Scholar

Biochemical membrane lipidomics during Drosophila development

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lipids play critical roles in energy homeostasis, membrane structure, and signaling. Using liquid chromatography and mass spectrometry, we provide a comprehensive semiquantification of lipids during the life cycle of Drosophila melanogaster (230 glycerophospholipids, 210 sphingolipids, 6 sterols and sterol esters, and 60 glycerolipids) and obtain biological insights through this biochemical resource. First, we find a high and constant triacylglycerol-to-membrane lipid ratio during pupal stage, which is nonobvious in the absence of nutrient uptake and tissue remodeling. Second, sphingolipids undergo specific changes in headgroup (glycosylation) and tail configurations (unsaturation and hydroxylation on sphingoid base and fatty acyls, respectively), which correlate with gene expression of known (GlcT/CG6437; FA2H/ CG30502) and putative (Cyt-b5-r/CG13279) enzymes. Third, we identify a gender bias in phosphoethanolamine-ceramides as a lead for future investigation into sexual maturation. Finally, we partially characterize ghiberti, required for male meiotic cytokinesis, as a homolog of mammalian serine palmitoyltransferase.