Published in

American Chemical Society, Biochemistry, 10(47), p. 3194-3201, 2008

DOI: 10.1021/bi700912k

Links

Tools

Export citation

Search in Google Scholar

Dioxygen Reactivity and Heme Redox Potential of Truncated Human Cystathionine β-Synthase†

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cystathionine beta-synthase (CBS) catalyzes the condensation of serine and homocysteine to cystathionine, which represents the committing step in the transsulfuration pathway. CBS is unique in being a pyridoxal phosphate-dependent enzyme that has a heme cofactor. The activity of CBS under in vitro conditions is responsive to the redox state of the heme, which is distant from the active site and has been postulated to play a regulatory role. The heme in CBS is unusual; it is six-coordinate, low spin, and contains cysteine and histidine as axial ligands. In this study, we have assessed the redox behavior of a human CBS dimeric variant lacking the C-terminal regulatory domain. Potentiometric redox titrations showed a reversible response with a reduction potential of -291 +/- 5 mV versus the normal hydrogen electrode, at pH 7.2. Stopped-flow kinetic determinations demonstrated that Fe(II)CBS reacted with dioxygen yielding Fe(III)CBS without detectable formation of an intermediate species. A linear dependence of the apparent rate constant of Fe(II)CBS decay on dioxygen concentration was observed and yielded a second-order rate constant of (1.11 +/- 0.07) x 10 (5) M (-1) s (-1) at pH 7.4 and 25 degrees C for the direct reaction of Fe(II)CBS with dioxygen. A similar reactivity was observed for full-length CBS. Heme oxidation led to superoxide radical generation, which was detected by the superoxide dismutase (SOD)-inhibitable oxidation of epinephrine. Our results show that CBS may represent a previously unrecognized source of cytosolic superoxide radical.