Published in

Karger Publishers, Cellular Physiology and Biochemistry, 6(20), p. 925-934, 2007

DOI: 10.1159/000110453

Links

Tools

Export citation

Search in Google Scholar

The Flavonoid Silibinin Decreases Glucose-6-Phosphate Hydrolysis in Perifused Rat Hepatocytes by an Inhibitory Effect on Glucose-6-Phosphatase

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND/AIMS: The flavonoid silibinin has been reported to be beneficial in several hepatic disorders. Recent evidence also suggests that silibinin could be beneficial in the treatment of type 2 diabetes, owing to its anti-hyperglycemic properties. However, the mechanism(s) underlying these metabolic effects remains unknown. METHODS: The effects of silibinin on liver gluconeogenesis were studied by titrating hepatocytes from starved rats with sub-saturating concentrations of various exogenous substrates in a perifusion system. Hepatocytes from fed rats were also used to investigate glycogenolysis from endogenous glycogen. The effect of silibinin on glucose-6-phosphatase kinetics was determined in intact and permeabilized rat liver microsomes. RESULTS: Silibinin induced a dose-dependent inhibition of gluconeogenesis associated with a potent decrease in glucose-6-phosphate hydrolysis. This effect was demonstrated whatever the gluconeogenic substrates used, i.e. dihydroxyacetone, lactate/pyruvate, glycerol and fructose. In addition, silibinin decreased the glucagon-induced stimulation of both gluconeogenesis and glycogenolysis, this being associated with a reduction of glucose-6-phosphate hydrolysis. Silibinin inhibits glucose-6-phosphatase in rat liver microsomes in a concentration-dependent manner that could explain the decrease in glucose-6-phosphate hydrolysis seen in intact cells. CONCLUSION: The inhibitory effect of silibinin on both hepatic glucose-6-phosphatase and gluconeogenesis suggests that its use may be interesting in treatment of type 2 diabetes.