Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 10(114), p. 3592-3600, 2010

DOI: 10.1021/jp9120468

Links

Tools

Export citation

Search in Google Scholar

Molecular Force Field for Ionic Liquids V: Hydroxyethylimidazolium, Dimethoxy-2- Methylimidazolium, and Fluoroalkylimidazolium Cations and Bis(Fluorosulfonyl)Amide, Perfluoroalkanesulfonylamide, and Fluoroalkylfluorophosphate Anions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this article, the fifth of a series that describes the parametrization of a force field for the molecular simulation of ionic liquids within the framework of statistical mechanics, we have modeled cations belonging to the hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium families and anions of the bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate families. The development of the force field, created in the spirit of the OPLS-AA model in a stepwise manner and oriented toward the calculation of equilibrium thermodynamic and structural properties in the liquid and crystalline phases, is discussed in detail. Because of the transferability of the present force field, the ions studied here can be combined with those reported in our four previous publications to create a large variety of ionic liquids that can be studied by molecular simulation. The present extension of the force field was validated by comparison of simulation results with experimental crystal structure and liquid density data.