Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 16(112), p. 5039-5046, 2008

DOI: 10.1021/jp800281e

Links

Tools

Export citation

Search in Google Scholar

Molecular Force Field for Ionic Liquids IV: Trialkylimidazolium and Alkoxycarbonyl-Imidazolium Cations; Alkylsulfonate and Alkylsulfate Anions

Journal article published in 2008 by José N. Canongia Lopes ORCID, Agílio A. H. Pádua ORCID, Karina Shimizu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This is the fourth article of a series that describes the parametrization of a force field for the molecular simulation of common ionic liquids within the framework of statistical mechanics. The force field was developed in the spirit of the OPLS-AA model and is thus oriented toward the calculation of equilibrium thermodynamic and structural properties in the condensed (liquid) phase. The ions modeled in the present paper are cations of the 1,2,3-trialkylimidazolium and alkoxycarbonyl imidazolium families and alkylsulfate and alkylsulfonate anions. As in previous publications, the force field is built in a stepwise manner that allows, for example, the construction of models for an entire family of cations or anions, with alkyl side chains of different length. Because of the transferability of the present force field, the ions studied here can be combined with those reported in our three previous publications to create a large variety of ionic liquids that can be studied by molecular simulation. The extension of the force field was validated by comparison of simulation results with the corresponding crystal structure and liquid density experimental data.