Published in

Elsevier, CATENA, 2(81), p. 113-116

DOI: 10.1016/j.catena.2010.01.010

Links

Tools

Export citation

Search in Google Scholar

Utilization of near infrared reflectance spectroscopy (NIRS) to quantify the impact of earthworms on soil and carbon erosion in steep slope ecosystem

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work focuses on a new approach to quantify the effects of above-ground earthworm's activity on soil erosion in steep slope ecosystems such as in Northern Vietnam. In these areas and in many others in the world, soil erosion becomes a major issue while the factors that determine it are still misunderstood. Earthworm's activity is believed to influence soil erosion rate, but we are still unable to precisely quantify their contribution to soil erosion. In this study, we used Near Infrared Reflectance Spectroscopy (NIRS) to quantify the proportion of soil aggregate in eroded soil coming from earthworm activity. This was done by generating NIRS signatures corresponding to different soil surface aggregates (above-ground soil casts produced by earthworms vs. surrounding topsoil).In order to test the proposed approach, we compared the NIRS-signature of eroded soil sediments to those of earthworms' casts and of the surrounding soils. Our results strongly supported that NIRS spectra might be used as “fingerprints” to identify the origin of soil aggregates. Although earthworms are generally assumed to play a favorable role in promoting soil fertility and ecosystem services, this method shows that cast aggregates constitute about 36 and 77% of sediments in two tropical plantations, Paspalum atratum and Panicum maximum plantations, respectively. In light with these results, we estimated that earthworms led to an annual loss of 3.3 and 15.8kg of carbon ha−1yr−1, respectively in P. atratum and P. maximum agroecosystems.