Published in

Elsevier, Current Opinion in Biotechnology, (33), p. 149-156

DOI: 10.1016/j.copbio.2015.02.014

Links

Tools

Export citation

Search in Google Scholar

Engineering electrodes for microbial electrocatalysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microbial electrocatalysis refers to the use of microorganisms to catalyze electrode reactions. Many processes have been developed on this principle, ranging from power generation to CO2 conversion using bioelectrochemical systems. The nature of the interface between the microorganisms and the electrodes determines the functioning and efficiency of these systems. This interface can be manipulated in terms of chemical and topographical features to better understand the interaction at nanometer and micrometer scales. Here we discuss how the electrode surface topography and chemistry impact the microorganism-electrode interaction both for direct and indirect electron transfer mechanisms. It appears that composite materials that combine high conductivity with excellent biocompatibility are most attractive towards application. In most cases this implies a combination of a metallic backbone with a carbon coating with a defined topography and chemistry.