Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Water Resources Management

DOI: 10.1007/s11269-013-0270-y

Links

Tools

Export citation

Search in Google Scholar

Temperature performance of different pervious pavements: Rainwater harvesting for energy recovery purposes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pervious pavements offer a solution for rainwater runoff treatment in urban areas, combining storm-water management with water reuse purposes when the sub-bases become rainwater reservoirs. Furthermore, the thermal behaviour research into these systems has demonstrated their contribution to palliating the urban heat island effect in the hottest season and to delaying freezing during the coldest season. Recent investigations related to pervious pavements and their sub-bases have enabled the use of these structures combined with Ground Source Heat Pumps (GSHP) in addition to the other well-known applications. The aim of this field study is to investigate the temperature response observations of the water stored in the sub-bases of different pervious pavements under specific conditions, in order to evaluate the possibility of introducing GSHP technology. The base and sub-base temperatures of different types of pervious pavements were monitored during one year and the results obtained show the differences in pervious pavements temperature compared to air temperature over the period of study; and demonstrate that the sub-base is less affected by the air temperature than the base, due to the insulating capacity of pervious pavements. On the other hand, water samples were taken from the different pervious pavement sub-bases in order to assess the water quality deterioration due to the temperatures reached in the sub-base, focused on investigating the presence of Legionella in this particular aquatic environment.